metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[1,1'-(1,3-phenylenedimethylene)di(1*H*-imidazol-3-ium)] β-octamolybdate

Xiao-Dan Wang, Guang-Feng Hou, Ying-Hui Yu and Jin-Sheng Gao*

Engineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China, and College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: hgf1000@163.com

Received 24 November 2011; accepted 9 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.026; wR factor = 0.057; data-to-parameter ratio = 16.2.

In the title compound, $(C_{14}H_{16}N_4)_2$ [Mo₈O₂₆], the β -octamolybdate anion is centrosymmetric. N-H···O hydrogen bonds link the diimidazolium cations and the polyoxidoanions into a chain structure along [100]. π - π interactions between the imidazole rings and between the imidazole and benzene rings [centroid–centroid distances = 3.611 (2) and 3.689 (3) Å, respectively] connect the chains.

Related literature

For general background to polyoxidometalate-based organicinorganic hybrid compounds, see: Xie *et al.* (2011); Xu *et al.* (1999). For the synthesis of the ligand, see: Yang *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{14}{\rm H}_{16}{\rm N}_4)_2 [{\rm Mo}_8{\rm O}_{26}] \\ M_r = 1664.14 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 12.163 \ (2) \ {\rm \AA} \\ b = 12.785 \ (3) \ {\rm \AA} \\ c = 14.937 \ (3) \ {\rm \AA} \\ \beta = 96.82 \ (3)^\circ \end{array}$

 $V = 2306.3 (8) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 2.20 \text{ mm}^{-1}$ T = 293 K $0.12 \times 0.10 \times 0.10 \text{ mm}$

Data collection

```
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
```

 $T_{\min} = 0.780, \ \tilde{T}_{\max} = 0.809$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of
$wR(F^2) = 0.057$	independent and constrained
S = 1.01	refinement
5261 reflections	$\Delta \rho_{\rm max} = 1.12 \text{ e} \text{ Å}^{-3}$
324 parameters	$\Delta \rho_{\rm min} = -1.30 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N2 - H21 \cdots O12^{i} \\ N4 - H41 \cdots O5^{ii} \\ N4 - H41 \cdots O8^{ii} \end{array}$	0.90 (1)	1.96 (2)	2.844 (4)	168 (4)
	0.90 (1)	2.51 (5)	3.003 (5)	115 (4)
	0.90 (1)	2.23 (4)	2.909 (5)	132 (5)

21595 measured reflections

 $R_{\rm int} = 0.032$

5261 independent reflections

4579 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x + 1, y - 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2492).

References

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, Y.-M., Yu, R.-M., Wu, X.-Y., Wang, F., Zhang, J. & Lu, C.-Z. (2011). Cryst. Growth Des. 11, 4739–4741.
- Xu, Q., Wang, R.-Z., Yang, G.-Y., Xing, Y.-H., Li, D.-M., Bu, W.-M., Ye, L., Fan, Y.-G., Yang, G.-D., Xong, Y., Lin, Y.-H. & Jia, H.-Q. (1999). *Chem. Commun.* pp. 983–984.
- Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.

Acta Cryst. (2012). E68, m50 [doi:10.1107/S1600536811053050]

Bis[1,1'-(1,3-phenylenedimethylene)di(1*H*-imidazol-3-ium)] β -octamolybdate

X.-D. Wang, G.-F. Hou, Y.-H. Yu and J.-S. Gao

Comment

The synthesis and characterization of coordination networks based on the idea of self-assembly of specifically designed building blocks have been an area of rapid growth in recent years. In the last decades, more and more attention has been paid to the rational design and assembly of new polyoxometalate(POM)-based organic-inorganic hybrid compounds due to their structural diversities and abundant potential applications in catalysis, ion exchange, sorption and magnetism (Xie *et al.*, 2011). Octamolybdate family with a variety of structural isomers is a kind of important POMs building blocks (Xu *et al.*, 1999). The title compound was synthesized at a low pH value condition, as an unexpected product during the process of preparing POM-based Cu(II)–ligand complex. We report its structure here.

The asymmetric unit of the title compound contains one half of β -[Mo₈O₂₆]⁴⁻ polyoxoanion and one (1,3-phenylenedimethylene)-di-1*H*-imidazolium cation (Fig. 1). The polyoxoanion is centrosymmetric. N—H···O hydrogen bonds link the cations and polyoxoanions into a chain structure along [1 0 0] (Fig. 2, Table 1). π - π interactions between the imidazole rings and between the imidazole and benzene rings [centroid–centroid distances = 3.611 (2) and 3.689 (3) Å] connect the chains.

Experimental

The 1,3-bis(imidazol-l-yl-methyl)benzene (bimb) ligand was synthesized following the literature method (Yang *et al.*, 2006). The title compound was synthesized by mixing bimb (0.101 g, 0.5 mmol), $Cu(NO_3)_2.4H_2O$ (0.102 g, 0.05 mmol), sodium molybdate (0.505 g, 2.5 mmol), H₂O (8 ml) and ethanol (2 ml) and stirring at room temperature for 10 min. The pH value of the mixture was adjusted to 2.0 with 1M HCl, and then the mixture was sealed in a Teflon-lined autoclave and heated at 125°C for 4 days. After slow cooling to room temperature, black block crystals were obtained in 22% yield based on Mo atoms.

Refinement

The electron density residual peak (1.12) and hole (-1.30) are all around of Mo4 atom with distances of 0.71 and 0.81 Å, respectively. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bound to N atoms were located from a difference Fourier map and refined isotropically.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) 1-x, 2-y, 2-z; (ii) x, 1+y, z; (iii) -1+x, 1+y, z.]

Fig. 2. A view of the hydrogen-bonded chain structure along [1 0 0]. Dashed lines denote hydrogen bonds.

Bis[1,1'-(1,3-phenylenedimethylene)di(1*H*-imidazol-3-ium)] β-octamolybdate

F(000) = 1600

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 2.20 \text{ mm}^{-1}$ T = 293 K

Block, colorless

 $0.12 \times 0.10 \times 0.10 \text{ mm}$

 $D_{\rm x} = 2.396 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 17887 reflections

Crystal data

 $(C_{14}H_{16}N_4)_2[Mo_8O_{26}]$ $M_r = 1664.14$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.163 (2) Å b = 12.785 (3) Å c = 14.937 (3) Å $\beta = 96.82$ (3)° V = 2306.3 (8) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer	5261 independent reflections
Radiation source: fine-focus sealed tube	4579 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ω scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -15 \rightarrow 15$
$T_{\min} = 0.780, \ T_{\max} = 0.809$	$k = -16 \rightarrow 15$
21595 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.057$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0219P)^{2} + 3.6973P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5261 reflections	$(\Delta/\sigma)_{\text{max}} = 0.003$
324 parameters	$\Delta \rho_{max} = 1.12 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{min} = -1.30 \text{ e } \text{\AA}^{-3}$

			•2
Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.6205 (3)	0.5883 (3)	1.0719 (2)	0.0442 (9)
H1	0.6032	0.6216	1.1237	0.053*
C2	0.6426 (3)	0.6343 (3)	0.9957 (2)	0.0411 (8)
H2	0.6443	0.7059	0.9850	0.049*
C3	0.6529 (3)	0.4656 (3)	0.9766 (3)	0.0414 (8)
Н3	0.6623	0.4003	0.9512	0.050*
C4	0.6943 (3)	0.5749 (3)	0.8462 (2)	0.0375 (8)
H4A	0.6747	0.6456	0.8269	0.045*
H4B	0.6542	0.5268	0.8039	0.045*
C5	0.8175 (3)	0.5588 (3)	0.8459 (2)	0.0334 (7)
C6	0.8932 (4)	0.6252 (3)	0.8933 (3)	0.0574 (11)
H6	0.8687	0.6820	0.9245	0.069*
C7	1.0057 (4)	0.6069 (4)	0.8944 (4)	0.0722 (15)
H7	1.0564	0.6506	0.9275	0.087*
C8	1.0431 (3)	0.5248 (4)	0.8469 (4)	0.0638 (13)
H8	1.1188	0.5140	0.8473	0.077*
C9	0.9687 (3)	0.4581 (3)	0.7984 (3)	0.0416 (9)
C10	0.8560 (3)	0.4767 (3)	0.7982 (2)	0.0332 (7)
H10	0.8054	0.4328	0.7652	0.040*
C11	1.0073 (3)	0.3659 (3)	0.7484 (3)	0.0517 (11)
H11A	0.9529	0.3499	0.6974	0.062*
H11B	1.0764	0.3833	0.7254	0.062*
C12	0.9427 (4)	0.2172 (4)	0.8436 (4)	0.0673 (14)
H12	0.8670	0.2300	0.8342	0.081*
C13	0.9922 (5)	0.1420 (4)	0.8937 (4)	0.0722 (15)
H13	0.9581	0.0920	0.9264	0.087*
C14	1.1198 (3)	0.2305 (3)	0.8354 (3)	0.0503 (10)
H14	1.1882	0.2521	0.8202	0.060*
Mo1	0.547848 (19)	0.90288 (2)	1.084672 (17)	0.02207 (6)
Mo2	0.30667 (2)	1.04699 (2)	1.134611 (18)	0.02643 (7)
Mo3	0.27124 (2)	0.86907 (2)	0.973110 (19)	0.02576 (7)
Mo4	0.45286 (2)	0.80953 (3)	0.81444 (2)	0.03626 (8)
N1	0.6622 (2)	0.5573 (2)	0.93667 (18)	0.0312 (6)
N2	0.6281 (3)	0.4835 (3)	1.0589 (2)	0.0463 (8)
N3	1.0240 (2)	0.2736 (3)	0.8073 (2)	0.0425 (7)
N4	1.1028 (4)	0.1517 (3)	0.8884 (3)	0.0622 (10)
01	0.6277 (2)	0.9749 (2)	1.01029 (18)	0.0472 (7)

02	0.6373 (2)	0.8237 (2)	1.14858 (18)	0.0477 (7)
O3	0.48333 (18)	0.9874 (2)	1.15775 (16)	0.0372 (6)
O4	0.2810 (2)	1.0400 (2)	1.24323 (16)	0.0439 (6)
05	0.1925 (2)	1.1056 (2)	1.08042 (19)	0.0500 (7)
O6	0.27884 (17)	0.90605 (17)	1.09648 (15)	0.0298 (5)
07	0.45232 (19)	0.82404 (19)	1.01803 (19)	0.0429 (6)
08	0.1530 (2)	0.9344 (2)	0.93423 (17)	0.0417 (6)
O9	0.2328 (2)	0.7420 (2)	0.97568 (19)	0.0439 (6)
O10	0.33456 (19)	0.8728 (2)	0.85883 (16)	0.0361 (5)
011	0.6000 (2)	0.82712 (18)	0.86168 (17)	0.0371 (5)
012	0.4326 (2)	0.6786 (2)	0.8263 (2)	0.0548 (7)
O13	0.4385 (3)	0.8367 (2)	0.70317 (19)	0.0555 (7)
H21	0.619 (4)	0.433 (3)	1.099 (2)	0.066 (14)*
H41	1.155 (3)	0.107 (4)	0.911 (4)	0.10 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.052 (2)	0.054 (2)	0.0275 (18)	0.0126 (18)	0.0089 (15)	0.0002 (17)
C2	0.058 (2)	0.0311 (18)	0.035 (2)	0.0116 (16)	0.0088 (16)	-0.0002 (15)
C3	0.051 (2)	0.0339 (19)	0.039 (2)	0.0056 (16)	0.0056 (16)	0.0060 (15)
C4	0.0397 (19)	0.046 (2)	0.0268 (17)	0.0124 (15)	0.0046 (14)	0.0046 (15)
C5	0.0370 (18)	0.0339 (18)	0.0295 (17)	0.0007 (14)	0.0049 (13)	0.0056 (14)
C6	0.062 (3)	0.047 (2)	0.064 (3)	-0.013 (2)	0.012 (2)	-0.013 (2)
C7	0.048 (3)	0.074 (3)	0.093 (4)	-0.028 (2)	0.001 (2)	-0.012 (3)
C8	0.031 (2)	0.082 (4)	0.079 (3)	-0.004 (2)	0.010 (2)	0.010 (3)
C9	0.0353 (19)	0.052 (2)	0.039 (2)	0.0081 (16)	0.0115 (15)	0.0141 (17)
C10	0.0288 (16)	0.043 (2)	0.0277 (17)	0.0024 (14)	0.0033 (12)	0.0024 (14)
C11	0.049 (2)	0.063 (3)	0.047 (2)	0.022 (2)	0.0226 (18)	0.016 (2)
C12	0.044 (2)	0.076 (3)	0.087 (4)	0.012 (2)	0.025 (2)	0.026 (3)
C13	0.085 (4)	0.059 (3)	0.081 (4)	0.021 (3)	0.044 (3)	0.024 (3)
C14	0.038 (2)	0.056 (3)	0.057 (3)	0.0151 (18)	0.0060 (18)	0.006 (2)
Mo1	0.02070 (12)	0.02499 (13)	0.02034 (12)	0.00065 (9)	0.00169 (9)	0.00309 (10)
Mo2	0.02634 (13)	0.03154 (14)	0.02250 (13)	0.00129 (10)	0.00740 (10)	-0.00118 (11)
Mo3	0.02085 (12)	0.02662 (13)	0.03005 (15)	-0.00019 (10)	0.00399 (10)	-0.00093 (11)
Mo4	0.03172 (15)	0.04101 (17)	0.03793 (17)	0.01049 (12)	0.01196 (12)	0.01119 (13)
N1	0.0332 (14)	0.0329 (15)	0.0278 (14)	0.0086 (11)	0.0043 (11)	0.0027 (11)
N2	0.0480 (19)	0.052 (2)	0.0386 (18)	-0.0027 (15)	0.0048 (14)	0.0181 (15)
N3	0.0321 (15)	0.0544 (19)	0.0423 (18)	0.0143 (14)	0.0101 (13)	0.0102 (15)
N4	0.072 (3)	0.057 (2)	0.057 (2)	0.030 (2)	0.005 (2)	0.0138 (19)
01	0.0685 (18)	0.0394 (14)	0.0395 (15)	-0.0240 (13)	0.0304 (13)	-0.0137 (11)
O2	0.0417 (14)	0.0540 (17)	0.0440 (16)	0.0217 (12)	-0.0092 (11)	0.0005 (13)
03	0.0266 (12)	0.0462 (14)	0.0375 (14)	0.0049 (10)	-0.0015 (9)	-0.0123 (11)
O4	0.0429 (14)	0.0641 (18)	0.0268 (13)	-0.0067 (12)	0.0124 (10)	-0.0035 (12)
05	0.0521 (16)	0.0485 (16)	0.0464 (16)	0.0204 (13)	-0.0062 (12)	-0.0066 (13)
O6	0.0279 (11)	0.0316 (12)	0.0299 (12)	-0.0047 (9)	0.0038 (9)	0.0041 (9)
07	0.0268 (12)	0.0363 (14)	0.0635 (18)	0.0056 (10)	-0.0038 (11)	-0.0175 (12)
08	0.0347 (13)	0.0524 (16)	0.0370 (14)	0.0147 (11)	-0.0001 (10)	-0.0028 (12)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0130.073 (2)0.0581 (18)0.0390 (16)0.0120 (15)0.0235 (14)0.0048 (14)Geometric parameters (Å, 0)C1C21.336 (5)C13H130.9300C1N21.359 (5)C14N31.312 (5)C1-H10.9300C14N41.313 (6)C2H20.9300Mo1O21.695 (2)C3-N21.319 (5)Mo1O71.756 (2)C3-N11.326 (4)Mo1O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4C51.513 (5)Mo2-O41.699 (2)C4C51.513 (5)Mo2-O51.697 (3)C4H4A0.9700Mo2-O61.908 (2)C4H4B0.9700Mo2-O111.966 (2)C5-C61.384 (5)Mo2-O32.267 (2)C5-C61.387 (7)Mo3-O91.692 (2)C6-C71.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O101.955 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-C81.391 (5)Mo4-O131.687 (3)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O121.704 (3)C1-H100.9300Mo3-O101.842 (2)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N2-H210.901 (10)
Geometric parameters (Å, °)C1C21.336 (5)C13H130.9300C1N21.359 (5)C14N31.312 (5)C1H10.9300C14N41.313 (6)C2N11.362 (4)C14H140.9300C2H20.9300Mo1O21.695 (2)C3N21.319 (5)Mo1-O71.756 (2)C3N11.326 (4)Mo1-O31.783 (2)C3H30.9300Mo1-O11.811 (2)C4N11.468 (4)Mo2-O41.690 (2)C4H4A0.9700Mo2-O51.697 (3)C4H4B0.9700Mo2-O1i1.906 (2)C5C101.381 (5)Mo2-O32.267 (2)C5-C61.384 (5)Mo2-O32.267 (2)C5-C61.384 (5)Mo2-O1i1.692 (2)C6-H60.9300Mo3-O81.704 (2)C7-H70.9300Mo3-O61.894 (2)C7-H70.9300Mo3-O72.298 (2)C8-L61.381 (6)Mo3-O72.298 (2)C8-L701.381 (5)Mo4-O131.687 (3)C9-C101.391 (5)Mo4-O131.687 (3)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O101.842 (2)C11-H1A0.9300Mo4-O101.842 (2)C11-H1A0.9700N2-H210.901 (10)C11-H1B0.9700N2-H210.901 (10)
Geometric parameters (Å, $^{\circ}$)C1C21.336 (5)C13H130.9300C1N21.359 (5)C14N31.312 (5)C1H10.9300C14N41.313 (6)C2N11.362 (4)C14H140.9300C2H20.9300Mo1O21.695 (2)C3N21.319 (5)Mo1-O71.756 (2)C3N11.326 (4)Mo1-O31.783 (2)C3H30.9300Mo1-O11.811 (2)C4N11.468 (4)Mo2O41.690 (2)C4C51.513 (5)Mo2O51.697 (3)C4H4B0.9700Mo2O61.908 (2)C5C101.381 (5)Mo2-O1i1.966 (2)C5C61.384 (5)Mo2-O1i1.966 (2)C5C61.384 (5)Mo2-O1i1.692 (2)C6H60.9300Mo3-O91.692 (2)C6H60.9300Mo3-O72.286 (2)C7H70.9300Mo3-O72.288 (2)C8C91.383 (6)Mo3-O72.288 (2)C8H80.9300Mo3-O1i1.687 (3)C9C101.391 (5)Mo4-O131.687 (3)C9C111.501 (6)Mo4-O121.704 (3)C10H100.9300Mo4-O101.842 (2)C11N31.472 (5)Mo4-O111.858 (3)C11H11A0.9700N2-H210.901 (10)C11H11B0.9700N2-H210.901 (10)
C1C21.336 (5)C13H130.9300C1N21.359 (5)C14N31.312 (5)C1H10.9300C14N41.313 (6)C2H11.362 (4)C14H140.9300C2H20.9300Mo1O21.695 (2)C3N21.319 (5)Mo1-O71.756 (2)C3N11.326 (4)Mo1-O31.783 (2)C3H30.9300Mo1-O11.811 (2)C4N11.468 (4)Mo2O41.690 (2)C4C51.513 (5)Mo2-O51.697 (3)C4H4A0.9700Mo2-O11 i1.966 (2)C5C101.381 (5)Mo2-O32.267 (2)C5C61.384 (5)Mo2-O1 i2.410 (3)C6C71.387 (7)Mo3-O81.704 (2)C7C81.374 (7)Mo3-O61.894 (2)C7H70.9300Mo3-O101.955 (2)C8C91.383 (6)Mo3-O72.298 (2)C8H80.9300Mo4-O131.687 (3)C9C101.391 (5)Mo4-O131.687 (3)C9C111.501 (6)Mo4-O111.842 (2)C11H131.472 (5)Mo4-O111.858 (3)C11H11A0.9700N2H210.901 (10)C11H11B0.9700N4H410.896 (10)
C1-N21.359 (5)C14-N31.312 (5)C1-H10.9300C14-N41.313 (6)C2-N11.362 (4)C14-H140.9300C2-H20.9300Mo1-O21.695 (2)C3-N21.319 (5)Mo1-O71.756 (2)C3-N11.326 (4)Mo1-O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4-N11.468 (4)Mo2-O41.690 (2)C4-C51.513 (5)Mo2-O51.697 (3)C4-H4A0.9700Mo2-O61.908 (2)C4-H4B0.9700Mo2-O11 ¹ 1.966 (2)C5-C101.381 (5)Mo2-O32.267 (2)C5-C61.384 (5)Mo2-O1 ¹ 2.410 (3)C6-C71.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O101.955 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-H70.9300Mo3-O101.955 (2)C8-C91.383 (6)Mo3-O72.298 (2)C8-H80.9300Mo3-O1 ¹ 2.341 (2)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O121.704 (3)C10-H100.9300Mo4-O111.858 (3)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N4-H410.896 (10)
C1—H10.9300C14—N41.313 (6)C2—N11.362 (4)C14—H140.9300C2—H20.9300Mo1—O21.695 (2)C3—N21.319 (5)Mo1—O71.756 (2)C3—N11.326 (4)Mo1—O31.783 (2)C3—H30.9300Mo1—O11.811 (2)C4—N11.468 (4)Mo2—O41.690 (2)C4—C51.513 (5)Mo2—O51.697 (3)C4—H4A0.9700Mo2—O61.908 (2)C5—C101.381 (5)Mo2—O11 ⁱ 1.966 (2)C5—C61.384 (5)Mo2—O1 ⁱ 2.410 (3)C6—C71.387 (7)Mo3—O91.692 (2)C6—H60.9300Mo3—O81.704 (2)C7—C81.374 (7)Mo3—O61.894 (2)C7—H70.9300Mo3—O1 ⁱ 2.341 (2)C7—H70.9300Mo3—O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O111.845 (3)C10—H100.9300Mo4—O101.842 (2)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C2-N11.362 (4)C14-H140.9300C2-H20.9300Mo1-O21.695 (2)C3-N21.319 (5)Mo1-O71.756 (2)C3-N11.326 (4)Mo1-O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4-N11.468 (4)Mo2-O41.690 (2)C4-H4A0.9700Mo2-O51.697 (3)C4-H4B0.9700Mo2-O61.908 (2)C5-C101.381 (5)Mo2-O1i1.966 (2)C5-C61.384 (5)Mo2-O1i2.410 (3)C6-C71.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O81.704 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-H70.9300Mo3-O101.955 (2)C8-C91.383 (6)Mo3-O11.955 (2)C8-H80.9300Mo3-O1i2.341 (2)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O111.858 (3)C10-H100.9300Mo4-O101.842 (2)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N4-H410.896 (10)
C2-H20.9300Mo1-O21.695 (2)C3-N21.319 (5)Mo1-O71.756 (2)C3-N11.326 (4)Mo1-O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4-N11.468 (4)Mo2-O41.690 (2)C4-C51.513 (5)Mo2-O51.697 (3)C4-H4A0.9700Mo2-O61.908 (2)C5-C101.381 (5)Mo2-O11 ⁱ 1.966 (2)C5-C61.384 (5)Mo2-O1 ⁱ 2.267 (2)C5-C61.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O81.704 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-H70.9300Mo3-O101.955 (2)C8-C91.383 (6)Mo3-O11.955 (2)C8-H80.9300Mo3-O1 ⁱ 2.341 (2)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O101.842 (2)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N2-H210.901 (10)
C3-N21.319 (5)Mo1-O71.756 (2)C3-N11.326 (4)Mo1-O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4-N11.468 (4)Mo2-O41.690 (2)C4-C51.513 (5)Mo2-O51.697 (3)C4-H4A0.9700Mo2-O61.908 (2)C4-H4B0.9700Mo2-O11 ⁱ 1.966 (2)C5-C101.381 (5)Mo2-O32.267 (2)C5-C61.384 (5)Mo2-O1 ⁱ 2.410 (3)C6-C71.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O81.704 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-H70.9300Mo3-O101.955 (2)C8-C91.383 (6)Mo3-O72.298 (2)C8-H80.9300Mo3-O1i1.687 (3)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O101.842 (2)C11-N31.472 (5)Mo4-O111.858 (3)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N4-H410.896 (10)
C3-N11.326 (4)Mo1-O31.783 (2)C3-H30.9300Mo1-O11.811 (2)C4-N11.468 (4)Mo2-O41.690 (2)C4-C51.513 (5)Mo2-O51.697 (3)C4-H4A0.9700Mo2-O61.908 (2)C4-H4B0.9700Mo2-O11 ⁱ 1.966 (2)C5-C101.381 (5)Mo2-O32.267 (2)C5-C61.384 (5)Mo2-O1 ⁱ 2.410 (3)C6-C71.387 (7)Mo3-O91.692 (2)C6-H60.9300Mo3-O81.704 (2)C7-C81.374 (7)Mo3-O61.894 (2)C7-H70.9300Mo3-O101.955 (2)C8-C91.383 (6)Mo3-O72.298 (2)C8-H80.9300Mo3-O1 ⁱ 2.341 (2)C9-C101.391 (5)Mo4-O131.687 (3)C9-C111.501 (6)Mo4-O101.842 (2)C11-H100.9300Mo4-O101.842 (2)C11-H11A0.9700N2-H210.901 (10)C11-H11B0.9700N4-H410.896 (10)
C3-H30.9300 $Mo1-O1$ 1.811 (2)C4-N11.468 (4) $Mo2-O4$ 1.690 (2)C4-C51.513 (5) $Mo2-O5$ 1.697 (3)C4-H4A0.9700 $Mo2-O6$ 1.908 (2)C4-H4B0.9700 $Mo2-O11^i$ 1.966 (2)C5-C101.381 (5) $Mo2-O3$ 2.267 (2)C5-C61.384 (5) $Mo2-O1^i$ 2.410 (3)C6-C71.387 (7) $Mo3-O9$ 1.692 (2)C6-H60.9300 $Mo3-O8$ 1.704 (2)C7-C81.374 (7) $Mo3-O6$ 1.894 (2)C7-H70.9300 $Mo3-O10$ 1.955 (2)C8-C91.383 (6) $Mo3-O7$ 2.298 (2)C8-H80.9300 $Mo3-O1^i$ 2.341 (2)C9-C101.391 (5) $Mo4-O13$ 1.687 (3)C9-C111.501 (6) $Mo4-O10$ 1.842 (2)C11-N31.472 (5) $Mo4-O11$ 1.858 (3)C11-H11A0.9700 $N2-H21$ 0.901 (10)C11-H11B0.9700 $N4-H41$ 0.896 (10)
C4—N11.468 (4)Mo2—O41.690 (2)C4—C51.513 (5)Mo2—O51.697 (3)C4—H4A0.9700Mo2—O61.908 (2)C4—H4B0.9700Mo2—O11 ⁱ 1.966 (2)C5—C101.381 (5)Mo2—O32.267 (2)C5—C61.384 (5)Mo2—O1 ⁱ 2.410 (3)C6—C71.387 (7)Mo3—O91.692 (2)C6—H60.9300Mo3—O81.704 (2)C7—C81.374 (7)Mo3—O61.894 (2)C7—H70.9300Mo3—O101.955 (2)C8—C91.383 (6)Mo3—O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C4—C51.513 (5) $Mo2-O5$ 1.697 (3)C4—H4A0.9700 $Mo2-O6$ 1.908 (2)C4—H4B0.9700 $Mo2-O11^i$ 1.966 (2)C5—C101.381 (5) $Mo2-O3$ 2.267 (2)C5—C61.384 (5) $Mo2-O1^i$ 2.410 (3)C6—C71.387 (7) $Mo3-O9$ 1.692 (2)C6—H60.9300 $Mo3-O8$ 1.704 (2)C7—C81.374 (7) $Mo3-O6$ 1.894 (2)C7—H70.9300 $Mo3-O10$ 1.955 (2)C8—C91.383 (6) $Mo3-O1^i$ 2.341 (2)C9—C101.391 (5) $Mo4-O13$ 1.687 (3)C9—C111.501 (6) $Mo4-O10$ 1.842 (2)C11—H100.9300 $Mo4-O11$ 1.858 (3)C11—H11A0.9700 $N2-H21$ 0.901 (10)C11—H11B0.9700 $N4-H41$ 0.896 (10)
C4—H4A0.9700 $Mo2-O6$ 1.908 (2)C4—H4B0.9700 $Mo2-O11^i$ 1.966 (2)C5—C101.381 (5) $Mo2-O3$ 2.267 (2)C5—C61.384 (5) $Mo2-O1^i$ 2.410 (3)C6—C71.387 (7) $Mo3-O9$ 1.692 (2)C6—H60.9300 $Mo3-O8$ 1.704 (2)C7—C81.374 (7) $Mo3-O6$ 1.894 (2)C7—H70.9300 $Mo3-O10$ 1.955 (2)C8—C91.383 (6) $Mo3-O7$ 2.298 (2)C8—H80.9300 $Mo3-O1^i$ 2.341 (2)C9—C101.391 (5) $Mo4-O13$ 1.687 (3)C9—C111.501 (6) $Mo4-O12$ 1.704 (3)C10—H100.9300 $Mo4-O10$ 1.842 (2)C11—N31.472 (5) $Mo4-O11$ 1.858 (3)C11—H11A0.9700 $N2-H21$ 0.901 (10)C11—H11B0.9700 $N4-H41$ 0.896 (10)
C4—H4B 0.9700 $Mo2-O11^{1}$ $1.966(2)$ C5—C10 $1.381(5)$ $Mo2-O3$ $2.267(2)$ C5—C6 $1.384(5)$ $Mo2-O1^{1}$ $2.410(3)$ C6—C7 $1.387(7)$ $Mo3-O9$ $1.692(2)$ C6—H6 0.9300 $Mo3-O8$ $1.704(2)$ C7—C8 $1.374(7)$ $Mo3-O6$ $1.894(2)$ C7—H7 0.9300 $Mo3-O10$ $1.955(2)$ C8—C9 $1.383(6)$ $Mo3-O7$ $2.298(2)$ C8—H8 0.9300 $Mo3-O1^{1}$ $2.341(2)$ C9—C10 $1.391(5)$ $Mo4-O13$ $1.687(3)$ C9—C11 $1.501(6)$ $Mo4-O10$ $1.842(2)$ C11—H10 0.9300 $Mo4-O11$ $1.858(3)$ C11—H11A 0.9700 $N2-H21$ $0.901(10)$ C11—H11B 0.9700 $N4-H41$ $0.896(10)$
C5C10 $1.381 (5)$ Mo2-O3 $2.267 (2)$ C5C6 $1.384 (5)$ Mo2-O1i $2.410 (3)$ C6C7 $1.387 (7)$ Mo3-O9 $1.692 (2)$ C6H6 0.9300 Mo3-O8 $1.704 (2)$ C7C8 $1.374 (7)$ Mo3-O6 $1.894 (2)$ C7H7 0.9300 Mo3-O10 $1.955 (2)$ C8C9 $1.383 (6)$ Mo3-O7 $2.298 (2)$ C8H8 0.9300 Mo3-O1i $2.341 (2)$ C9C10 $1.391 (5)$ Mo4-O13 $1.687 (3)$ C9C11 $1.501 (6)$ Mo4-O12 $1.704 (3)$ C10H10 0.9300 Mo4-O11 $1.842 (2)$ C11N3 $1.472 (5)$ Mo4-O11 $1.858 (3)$ C11H11B 0.9700 N2H21 $0.901 (10)$
C5—C6 $1.384 (5)$ M_{02} —O1 ⁱ $2.410 (3)$ C6—C7 $1.387 (7)$ $Mo3$ —O9 $1.692 (2)$ C6—H6 0.9300 $Mo3$ —O8 $1.704 (2)$ C7—C8 $1.374 (7)$ $Mo3$ —O6 $1.894 (2)$ C7—H7 0.9300 $Mo3$ —O10 $1.955 (2)$ C8—C9 $1.383 (6)$ $Mo3$ —O1 ⁱ $2.298 (2)$ C8—H8 0.9300 $Mo3$ —O1 ⁱ $2.341 (2)$ C9—C10 $1.391 (5)$ $Mo4$ —O13 $1.687 (3)$ C9—C11 $1.501 (6)$ $Mo4$ —O12 $1.704 (3)$ C10—H10 0.9300 $Mo4$ —O10 $1.842 (2)$ C11—N3 $1.472 (5)$ $Mo4$ —O11 $1.858 (3)$ C11—H11A 0.9700 $N2$ —H21 $0.901 (10)$ C11—H11B 0.9700 $N4$ —H41 $0.896 (10)$
C6—C71.387 (7)Mo3—O91.692 (2)C6—H60.9300Mo3—O81.704 (2)C7—C81.374 (7)Mo3—O61.894 (2)C7—H70.9300Mo3—O101.955 (2)C8—C91.383 (6)Mo3—O72.298 (2)C8—H80.9300Mo3—O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C6—H60.9300Mo3—O81.704 (2)C7—C81.374 (7)Mo3—O61.894 (2)C7—H70.9300Mo3—O101.955 (2)C8—C91.383 (6)Mo3—O72.298 (2)C8—H80.9300Mo3—O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—H100.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C7—C81.374 (7)Mo3—O61.894 (2)C7—H70.9300Mo3—O101.955 (2)C8—C91.383 (6)Mo3—O72.298 (2)C8—H80.9300Mo3—O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C7—H70.9300Mo3—O101.955 (2)C8—C91.383 (6)Mo3—O72.298 (2)C8—H80.9300Mo3—O1 i 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C8—C91.383 (6)Mo3—O72.298 (2)C8—H80.9300 M_03 —O1 ⁱ 2.341 (2)C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C8—H8 0.9300 Mo3—O1 ⁱ 2.341 (2) C9—C10 1.391 (5) Mo4—O13 1.687 (3) C9—C11 1.501 (6) Mo4—O12 1.704 (3) C10—H10 0.9300 Mo4—O10 1.842 (2) C11—N3 1.472 (5) Mo4—O11 1.858 (3) C11—H11A 0.9700 N2—H21 0.901 (10) C11—H11B 0.9700 N4—H41 0.896 (10)
C9—C101.391 (5)Mo4—O131.687 (3)C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C9—C111.501 (6)Mo4—O121.704 (3)C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C10—H100.9300Mo4—O101.842 (2)C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C11—N31.472 (5)Mo4—O111.858 (3)C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C11—H11A0.9700N2—H210.901 (10)C11—H11B0.9700N4—H410.896 (10)
C11—H11B 0.9700 N4—H41 0.896 (10)
C12—C13 1.320 (7) $O1$ —Mo3 ¹ 2.341 (2)
C12—N3 1.385 (5) $O1$ —Mo2 ⁱ 2.410 (2)
C12—H12 0.9300 O11—Mo2 ⁱ 1.966 (2)
C13—N4 1.364 (7)
C2—C1—N2 106.7 (3) O4—Mo2—O6 100.96 (12)
C2—C1—H1 126.6 O5—Mo2—O6 99.70 (12)
N2—C1—H1 126.6 $O4$ —Mo2—O11 ⁱ 100.83 (12)
C1—C2—N1 107.6 (3) O5—Mo2—O11 ⁱ 95.11 (13)
C1—C2—H2 126.2 06 —Mo2—O11 ⁱ 149.63 (10)
N1—C2—H2 126.2 O4—Mo2—O3 96.62 (11)
N2—C3—N1 107.9 (3) O5—Mo2—O3 158.19 (12)
N2—C3—H3 126.1 06—Mo2—O3 81.93 (9)
N1—C3—H3 126.1 $O11^{i}$ —Mo2—O3 74.76 (10)

N1—C4—C5	110.7 (3)	O4—Mo2—O1 ⁱ	166.93 (12)
N1—C4—H4A	109.5	O5—Mo2—O1 ⁱ	87.85 (12)
C5—C4—H4A	109.5	O6—Mo2—O1 ⁱ	71.84 (9)
N1—C4—H4B	109.5	O11 ⁱ —Mo2—O1 ⁱ	82.45 (9)
С5—С4—Н4В	109.5	O3—Mo2—O1 ⁱ	71.88 (10)
H4A—C4—H4B	108.1	O9—Mo3—O8	104.73 (13)
C10—C5—C6	119.0 (4)	O9—Mo3—O6	101.50 (12)
C10—C5—C4	120.1 (3)	O8—Mo3—O6	98.69 (11)
C6—C5—C4	121.0 (3)	O9—Mo3—O10	100.47 (12)
C5—C6—C7	119.9 (4)	O8—Mo3—O10	95.41 (11)
С5—С6—Н6	120.1	O6—Mo3—O10	149.84 (10)
С7—С6—Н6	120.1	O9—Mo3—O7	90.60 (11)
C8—C7—C6	120.6 (4)	O8—Mo3—O7	164.34 (12)
С8—С7—Н7	119.7	O6—Mo3—O7	81.03 (10)
С6—С7—Н7	119.7	O10-Mo3-O7	78.34 (10)
C7—C8—C9	120.3 (4)	O9—Mo3—O1 ⁱ	163.48 (12)
С7—С8—Н8	119.8	O8—Mo3—O1 ⁱ	91.69 (12)
С9—С8—Н8	119.8	O6—Mo3—O1 ⁱ	73.73 (9)
C8—C9—C10	118.6 (4)	O10—Mo3—O1 ⁱ	79.36 (10)
C8—C9—C11	121.4 (4)	O7—Mo3—O1 ⁱ	73.12 (10)
C10—C9—C11	120.0 (4)	O13—Mo4—O12	107.75 (16)
C5—C10—C9	121.5 (3)	O13—Mo4—O10	105.68 (13)
C5—C10—H10	119.2	O12—Mo4—O10	105.41 (13)
С9—С10—Н10	119.2	O13—Mo4—O11	109.38 (14)
N3—C11—C9	111.1 (3)	O12-Mo4-O11	102.95 (12)
N3—C11—H11A	109.4	O10—Mo4—O11	124.66 (10)
С9—С11—Н11А	109.4	C3—N1—C2	108.4 (3)
N3—C11—H11B	109.4	C3—N1—C4	126.6 (3)
C9—C11—H11B	109.4	C2—N1—C4	124.9 (3)
H11A—C11—H11B	108.0	C3—N2—C1	109.3 (3)
C13—C12—N3	107.7 (4)	C3—N2—H21	124 (3)
C13—C12—H12	126.2	C1—N2—H21	127 (3)
N3—C12—H12	126.2	C14—N3—C12	107.7 (4)
C12—C13—N4	106.7 (4)	C14—N3—C11	125.6 (3)
C12—C13—H13	126.7	C12—N3—C11	126.7 (3)
N4—C13—H13	126.7	C14—N4—C13	109.4 (4)
N3—C14—N4	108.6 (4)	C14—N4—H41	125 (4)
N3—C14—H14	125.7	C13—N4—H41	125 (4)
N4—C14—H14	125.7	Mo1—O1—Mo3 ⁱ	132.92 (13)
O2—Mo1—O7	108.29 (13)	Mo1—O1—Mo2 ⁱ	138.66 (13)
O2—Mo1—O3	108.47 (12)	Mo3 ⁱ —O1—Mo2 ⁱ	88.18 (8)
O7—Mo1—O3	112.67 (11)	Mo1—O3—Mo2	126.04 (12)
O2—Mo1—O1	107.09 (14)	Mo3—O6—Mo2	120.84 (11)
O7—Mo1—O1	108.11 (13)	Mo1—O7—Mo3	124.65 (12)
O3—Mo1—O1	111.99 (12)	Mo4—O10—Mo3	135.18 (14)
O4—Mo2—O5	104.33 (14)	Mo4—O11—Mo2 ⁱ	129.54 (13)

Symmetry codes: (i) -x+1, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N2—H21···O12 ⁱⁱ	0.90 (1)	1.96 (2)	2.844 (4)	168 (4)	
N4—H41···O5 ⁱⁱⁱ	0.90(1)	2.51 (5)	3.003 (5)	115 (4)	
N4—H41···O8 ⁱⁱⁱ	0.90(1)	2.23 (4)	2.909 (5)	132 (5)	
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z+2$; (iii) $x+1$, $y-1$, z .					

Fig. 1

Fig. 2